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Dynamical equations for the interaction of high-wavenumber, high-frequency inter- 
nal waves with a prescribed, linear, large-scale internal-wave field are obtained from 
the Boussinesq-Euler equations. The relationship of these ' induced-diffusion ' inter- 
actions to the Taylor-Goldstein equation is discussed. Exact equations are derived 
in the induced-diffusion limit of McComas & Bretherton (1977) for the evolution of 
the first and second moments of the small-scale flow when the large-scale flow is 
assumed random. Estimates of corrections to the induced-diffusion approximation 
for the Garrett-Munk internal-wave model indicate the domain of applicability of 
these equations. Computations of the autocorrelation function and action transport 
in wavenumber and physical space are presented. Severe limitations are found on the 
applicability of two-time perturbation theory and the resonant-interaction approxi- 
mation. The high transfer rates found by McComas & Bretherton in the induced- 
diffusion regime are reduced significantly in the present calculations. 

1. Introduction 
Weakly nonlinear interactions among waves occur in a variety of physical systems. 

To describe these processes for macroscopic media, such aa those encountered in 
plasma physics and geophysics, the radiative-transport equation is frequently used 
(Hasselmann 1966, 1967; Davidson 1972). Unfortunately, the accuracy of such 
approximation methods has been difficult to aasess. In  this paper we shall study 
a specific application which is of sufficient simplicity for a detailed analysis. 

The physical process that we shall study is the interaction of small-scale internal 
waves with a much larger-scale internal-wave field. Our dynamical description is 
based on a time-dependent form of the Taylor-Goldstein equation (Bretherton 1966; 
Booker & Bretherton 1967; Leblond & Mysak 1979) that has been used to study 
critical-layer phenomena. For our use of this equation the vertically sheared, hori- 
zontal flow results from the large-scale, near-inertial-frequency, portion of the internal- 
wave spectrum. 

For internal waves in the ocean, the observational data suggest a universal 
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‘equilibrium’ velocity spectrum (Garrett & Munk 1979, hereinafter referred to as 
GM). McComas & Bretherton (1977, hereinafter referred to as MB) have applied the 
Hasselmann transport equation to a detailed study of transfer processes within the 
internal-wave spectrum. Other discussions of internal wave transport have been given 
by Olbers (1976), who also used the Hwelmann radiative-transfer equation, and by 
Meiss, Pomphrey and Watson (Meiss, Pomphrey & Watson 1979, hereinafter referred 
to as MPW; Pomphrey, Meiss & Watson 1980, hereinafter referred to as PMW), who 
based their discussion on the Langevin and Fokker-Planck equations. (A similar 
study of Rossby waves has been given by Holloway & Hendershott (1977).) 

The analyses of MB, Olbers and PMW all use some form of ‘weak-nonlinearity’ 
perturbation approximation. In  particular, the wave-wave couplings are restricted 
to triad, or three-wave interactionst and a separation of ‘fast’ and ‘slow’ time scales 
is assumed. A radiative-transfer equation for the action density F(k) in the wave- 
number space is obtained. This has the form 

-= aF(k) I (k)  - 2vp(k) F ( k ) .  at 

Here I(k) 2 0 represents the flow of action into wavenumbers near k. This is an 
integral operator which is quadratic in F .  It wm demonstrated in PMW that v, is 
the ‘Langevin rate constant’, which describes the decorrelation rate of the Fourier 
amplitudes of the internal-wave field. A ‘Boltzmann rate’ was introduced in PMW as 

2~g(k) E [ I - ~ Y ~ P J / F .  (1.2) 

It was shown in PMW that 2vp represents the rates calculated by McComas (1977) 
in his ‘ bump experiments’. The quantity 2vB describes the net rate of action transport. 

The calculations of MB using (1 .1 )  indicated that the empirical GM spectrum 
represents - to an approximation - a steady-state solution of the radiative-transfer 
equation, except for specific wavenumber domains where sources and/or sinks of 
energy appear to occur. Unfortunately, the computed transfer rates indicate that the 
‘ weak-nonlinearity ’ assumption fails drastically for the higher-vertical-wavenumber 
portion of the spectrum (see figure 1 of PMW or Holloway (1980)). The physical 
significance of the calculated transfer rates h a  consequently been unclear. 

McComas & Bretherton identify three limiting forms of triad interactions as being 
of particular significance for the transport equation (1.1). It is the mechanism called 
induced diffusion by MB with which we shall be concerned in this paper. The induced- 
diffusion triads consist of two waves with high wavenumber and high frequency 
interacting with a third wave of much smaller wavenumber and frequency. In the 
high-vertical-wavenumber, high-frequency regime the induced-diffusion mechanism 
gives the principal contribution to the right-hand side of (1.1) and is also responsible 
for the high transfer rates that have cast doubt on the applicability of (1.1). 

The calculations presented in this paper are based on the Taylor-Goldstein equation. 
An ensemble average is performed over realizations of the large-scale flow, which is 
assumed to consist of linear internal waves with nearly inertial frequencies. Evolution 
equations for the first three moments of the Fourier-amplitude coefficients of the small- 

t Pomphrey (1981) has shown that for the constant-N model of MB and Olbers the restriction 
to triad interactions is exact. For the GM scaling used by PMW corrections are not thought to 
be significant. 
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E'IGURE 1. The induced-diffusion approximation and the oalouletions of this paper are valid 
within the reotangle. Letters label conditions (2.1) that fail at the boundaries. 

scale flow are derived. The first moment describes the decay of the autocorrelation 
function. It also gives the relaxation rate v p  when the spectrum is perturbed from 
'equilibrium' (PMW; McComas 1977). The equation for the second moment describes 
the evolution of action density in co-ordinate and wavenumber space - a modified 
form of jl .1).  The third moment corresponds to the bispectrum. 

The fist two moments are deduced from the induced-diffusion limit of the Taylor- 
Goldstein equation without approximation. Corrections to the induced-diffusion limit 
are obtained by perturbation theory. 

The domain in frequency-vertical-wavenumber space for which our calculations are 
considered t o  be valid is shown as the unshaded rectangle in figure 1. Here f is the 
inertial frequency (a latitude of 30" has been assumed), k, is the vertical wavenumber 
and B = 1.2 km is the GM scale length. We have related k, to the discrete eigenmode 
number j with the WKB relation 

keB 2: nj (j = 1,2, ...). (1.3) 

The left-hand boundary at j = 10 is suggested by figure 7 of PMW; for j 2 10 the 
induced diffusion limit wm found to account for v, to within the numerical accuracy 
of the calculation (limited by truncation at high mode numbers). The lower limit at 
o/ f = 5 is suggested by figure 4 of PMW. The upper limit at w/ f = 30 has been set in 
part to permit the use of a simple WKB approximation (see the discussion of this in 
MB and PMB) and in part because of observations by Pinkel (1975) and also a study 
by Yau (1981) which indicate that at higher frequencies effects due to the thermocline 
and the mixed layer need be accounted for in (1.1). The right-hand boundary at 
j N 250 represents the limit of validity anticipated for the Taylor-Goldstein equation. 

I n  the following sections of this paper we shall develop the induced diffusion theory 
11-2 



318 J .  D. Meiss and K .  M .  Watson 

for the ‘allowed region ’ in figure 1 - that is, the area within the unshaded rectangle. 
The value of vp obtained in this region will appear to have a relative error of less than 
10 yo (with the powible exception of the boundary a t j  21 250. A comparable validity 
for (1.1) is inferred. The very high transfer rates found by MB and PMW in the induced 
diffusion regime are not found in our present calculations. Indeed, vp is no longer 
found to be significantly greater than the linear-wave angular frequency. Also, the 
resonant-triad approximation, which results from the use of two-time perturbation 
theory, is found to be grossly in error in the region of figure 1 that is to the right of 
the dashed line labelled ‘boundary of weak-interaction regime’ (cf. Holloway (1979), 
who suggests a technique to model non-resonant interactions). 

The calculated Langevin rates for the d0mains.j < 10 or w / f  < 5 do not violate the 
‘weak-interaction’ postulate,t so the Hasselmann theory for (1.1) may be hoped to 
be valid in these regions. 

The elastic-scattering mechanism of MB represents a correction to induced diffusion 
in the allowed region of figure 1. Watson (1981) shows that the elastic-scattering 
Langevin constant does not violate the ‘ weak-interaction’ assumption and that this is 
much smaller than that due to induced diffusion in the allowed region. 
Miiller (1976) has considered the interaction of a small-scale internal wave field 

with quasi-geostrophic flows, treated as static. A WKB approximation was used by 
Miiller. His calculations are not directly comparable to those presented here because 
of the time variation of the large-scale wave field. 

2. Induced-diffusion approximation 
2.1. Dynamics 

To develop the induced-diffusion hydrodynamic model we choose a rectangular co- 
ordinate system with the (2, y)-plane coincident with the ocean surface and the z-axis 
directed upward. We make the Boussinesq approximation$ (Phillips 1977) and assume 
incompressible flow. In  the absence of waves, the fluid is stably stratified with density 

For the induced-diffusion approximation (IDA) the flow field is assumed to consist 
of large- and small-scale components. The small-scale flow is due to internal waves 
characterized by horizontal and vertical wavenumbers k h  and k,, and the horizontal 
and vertical components of the fluid velocity u and w respectively. The large-scale 
flow is characterized by wavenumbers lh and l,, and a horizontal fluid velocity U. 
The vertical velocity of the large-scale flow is neglected. Angular frequencies for the 
small- and large-scale flows are mk and wI. 

The observed properties of the internal wave field in the ocean (Garrett t Munk 
1979) suggest that the approximations 

k h  4 k,, l h  < 1, (2.10) 

are reasonable. Following MB, the induced-diffusion class of triads have the properties 

P = P ( 4 .  

k h  9 lh, k, I,, wk 9 (2.lb, c, d )  

t This is marginal in the lower right-hand corner in Ggure 1. 
$ We recall that the Boussinesq approximation waa made by PMW only in the h a 1  stage 

of numerical evaluation. 
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The linear Taylor-Goldstein equation is valid, or 

Here f, the inertial frequency, enters through the Coriolis term in Euler’s equations. 
The expression ( ) represents an average over the GM spectrum and the vertical 
displacement 6, is defined by (2.3) below. 

It is consistent with the IDA to wume  that U(r,t) is a prescribed velocity field 
that results from a superposition of linear internal waves. Because of the conditions 
(2.1)’ the horizontal gradients of U may be neglected. It is straightforward to obtain, 
from the Euler equations, the two coupled equations 

w = 06,. 
Here we have defined 

and introduced the ‘frequency operator ’ 

f =f% 

where N is the Brunt-V&i&lii frequency. If the inertial frequency f were zero, (2.2) 
and (2.3) would reduce to the time-dependent form of the Taylor-Goldstein equation 
(Bretherton 1966). On the other hand, if both terms on the right-hand side of (2.2) 
were neglected, we would obtain equations equivalent to the IDA of McComas & 
Bretherton. These two terms represent the leading corrections to the IDA and will 
be used to estimate the accuracy of this approximation. 

If the vertical component of velocity for the large-scale flow were taken into account, 
we would replace Na in (2.6) by 

Here x3 is the vertical fluid displacement due to the large-scale flow. The perturbation 
methods described in 8 3 have been used to  calculate the contribution from x,. This 
was negligibly small, so we are justified in setting x, = 0 in (2.6). 

It is convenient to use a WKB-like approximation for wave propagation in the 
vertical direction. We assume, following MB, that (2.2-2.3) applies in a rectangular 
volume of horizontal dimension s h  and vertical dimension S,. Within this volume, 
N is taken to be a constant. 

The system (2.2-2.3) can be reduced to a single equation by defining a complex 
field variable 

Inversion of this relation yields 
Z(r, t) = Q-lw -i.&. (2.6) 

(2.7) 6, = ) i ( Z  - Z*), w = )a(z + Z*). 

a 
The coupled equations (2.4) and (2.6) reduce to a single equation for 2: 

2z+im = S1+SN, (2.8) 
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In  the IDA the term 8, would be neglected. 
When 

the ‘weak-interaction’ condition used to derive (1 .1 )  is valid. Above and to the right 
of the dashed curve in figure 1 the condition 

is encountered. This is the domain in which the large-scale velocity U is expected to 
be comparable to, or exceed, the horizontal phase velocity q J k h  of the small-scale 
flow. Because of the ensemble-averaging needed to obtain our transport theory, critical 
layers are ‘smeared’ in co-ordinate space and are not exhibited explicitly in our 
calculations. As was observed by Cox & Johnson (1979), the distance that a small- 
scale wave packet propagates during the time vp’ is small compared with B (equation 
(1.3)) for the waves in the allowed region of figure 1. Thus the explicit time depend- 
ence afthe large-scale flow must be taken into account in studying induced diffusion. 

The Taylor-Goldstein equation describes a small-scale, small-amplitude flow per- 
turbing a large-scale flow. It is linearized in the amplitude of the small flow. The most 
significant term omitted from Euler’s equation appears to be 

(u +Lw) . V(u + %w), (2.10) 

which would lead to a correction of order d (condition (2.1e)) with respect to the 
D(V2w) term in (2.2). (The quantity 8 represent,s also the inverse Richardson number 
for the small-scale flow.) 

We have indicated in figure 1 by letters corresponding to the various conditions (2.1) 
the boundaries at which these fail to be valid. The quantity 6 N 0.2 along the boundary 
at j = 250. The term 8, gives a maximum contribution to up of about 10 yo along the 
boundary at w/ f = 5. In  the lower left corner ZJkS has a maximum about 0.25 (deter- 
mined from a resonant-triad condition). The condition (2.lb) is very well satisfied 
everywhere in the allowed region because of the weighting of small horizontal wave- 
numbers in the GM spectrum.? 

With no large-scale flow (V = 0), the solutions to (2.8) are linear internal waves 

(2.11) 

We use these solutions as a basis for a Fourier-series representation of the field Z 
in the volume 8; 8, : 

(2.12) 

t This is assured by special properties of the coefficients in the coupled modal equations 
(Pomphrey 1981). 
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Here the amplitudes a, are wave slope variables in the notation of MPW, and the bk 
are action-amplitude variables satisfying 

lbk12 = 4, (2.13) 

The corresponding Fourier expansion for the large-scale velocity is (see equation 
where Jk is the action per Unit volume (see, for example, equation (2.21) of MPW). 

(2.16) of MPW) 
(2.14) 

where the indicates a unit vector. The large-scale amplitudes evolve in time according 
to the linear equations of motion. We define dimensionless amplitudes for the large- 
scale flow by 

7 

where B is the GM scale length and the phase is dehed  by 

eih = i ( f h f i # x j h ) . & h .  

We will see that none of our results depend on this phase factor, because we assume 
that the large-scale flow is homogeneous (see equation (2.19). We therefore 'absorb' 
the phase into the amplitudes q with no loss of generality. 

In  terms of these variables (2.8) becomes 

4 c  = x bm, 
m 

Akm(t) = h(k, m) 2 [qeiA-t8k,4 - 4 , i A  + t &+,,+I], 

I 

A* Wk-",&y.  

There are contributions from both S, and S,  to the coefficients h(k, m) : 

h(k, m) = h,(k, m) +hi&, m), 

( 2 . 1 5 ~ )  

(2.16b) 

( 2 . 1 5 ~ )  

(2.16) 

In  obtaining (2.15) and (2.16) we have discarded terms containing 8k+m*I since 
these are far from resonance. I n  (2.16) we have set 2h = 0 and ks = kz. The sign of the 
second term in h, has been determined from the appropriate triad-resonance condition. 

In  the IDA the term hN in (2.16) is neglected and only the symmetric coefficient h, 
is used. We will see that if h ( k , m )  = h(m,  k) the total action is conserved by the 
transport system. 

I n  addition to the IDA we shall also consider the 'IDA limit '. In this limit the ratio 
ZJks is considered to be sufficiently small that only the lowest-order terms in this 
quantity are kept in h, and A*. 

For the IDA-limit solutions of the following sections, the most important property 
of the coupling coefficients is that 

hz(K K) = if KhB7 (2.17) 
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is independent of K,. Since h, is symmetric, the corrections to (2.17) arise only at 
second order : 

(2.18) 

Because of the very small values expected for l h  by (2.1), h,(K, K) may be conaidered 
a constant, independent of K ,  when solving (2.15). When 1, is determined from the 
resonant-triad conditions A* = 0, the value of the square bracket in (2.18) differs 
from unity by less than 1 yo in the allowed region of figure 1. For the derivation of 
'exact ' transport coefficients in IS3 and 4, the IDA limit is invoked to permit dropping 
terms of order (lJK,)* and higher in (2.18). In this limit we can consider R to be con- 
stant and h, a function of 1 only. 

2.2. LStatietical description of the Zarge-scale ,flow 

As discussed in f 1, we shall treat (2.15) w stochastic differential equations with the 
large-scale flow, wumed to be a Gaussian random field: 

(2.19) I (4 = 0, 
(cF (t + 7 )  s o ) )  = ~L,(c, I9 c;(7), 

(s"t') C I W  = 0, 

and so forth. Here C, is the correlation function and (Iq12) is the power spectrum. 
The large-scale wave correlation time is 

(2.20) 

I f  the principal mechanism for decorrelation of the large-scale flow is internal-wave- 
internal-wave interactions, 7c = (vP)-l. The calculations of up given in PMW indicate 
that 7c is much larger than any other characteristic time encountered here, 80 we are 
justified in taking 7;1= 0 in this paper and will consider the large-scale flow to regult 
from a linear internal-wave field. 

The power spectrum of the amplitudes q is related to the spectrum @ of the velocity 
field (2.14) byt  

(2.21) 
1 

This power spectrum is related to the vertical displacement spectrum Y by (see e.g. 

z I <lsI2> = ms"@('). 

(dld)B 
MPW) 

@(lz,lh) = 2 y ( l e , l h ) ,  (2.22) 

when horizontal isotropy is wsumed. We shall use the GM-76 spectrum for our com- 
putations. We shall require only the spectrum of vertical wavenumber: 

t W e  shall freely replace discrete Fourier sum8 by integrals using the equations 

z (Akh)*Ak,= Sdak, 
k 

where Ak, = 2n/rS, and Ak, = 2n/S,. 

(2.23) 
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Here the GM Vi-iisiLlii profile is used: 

N(2) = Noe"'B = Non(2), (2.24) 

where B = 1200 m is the scale length and No = 5.2 x 10-3 s-1 is the extrapolated 
surface value for the ViiiaZi.16 frequency. We shall also use the value f = 0014N0, 
which corresponds to 30" latitude. 

With the spectrum (2.23), the mean-square velocity of the flow is 

(u8) = ld lm@(ls )  = 0-44(Bf)2n(~).  (2.25) 

3. Autocorrelation relaxation 
3.1. The Langevin equation 

In  this section we shall obtain a relaxation equation for the amplitude of the small- 
scale flow averaged over realizations ofthe large-scale flow. In  PMW this was postulated 
to be of the Langevin form? 

d 3 @dt)> = - vp(k) @dt)), 

where ( ) represents the ensemble average (2.19) over the large flow field. We now 
derive a (modified) Langevin equation by two different methods. The first method 
considers only the IDA limit and obtains in this limit an exact result. The second 
method does not take the IDA limit in (2.15), but employs a perturbation expansion 
due to Van Kampen (1974a, b). The leading term of the Van Kampen expansion 
gives the exact result of the IDA limit and higher-order terms give successive correc- 
tions to this. Thus, comparison of these two calculations provides an assessment of the 
accuracy of our evaluation of the Langevin constant up.  

We begin with the formal solution of (2.15a): 

@dt) )  = ukm(t) bm(o), 
m 

where T( ) represents the time-ordered product. Our first task is to simplify the 2nth 
moment of A: 

?Lmomm(tl t87a) (A~m1(tl)Amlq(t8) ... A,-IPLIn(t8n)). (3.2) 
m1...%-l 

Here the ts are labelled consistently with the time-ordered product. 

evaluate (3.2) in terms of the second moments 
Because we have assumed that the cls are uncorrelated Gaussian variables, we may 

<4q-Ppi(tO 4nj_,"J(t,)). 

Using (2.15b) and taking the IDA limit the second moment can be written in the form 

(3.3) I#) = hi(K+_ 41,KT 81) [CT( t )e*A- t+q( t )e fA+t] ( lq18) .  1 (Akm(tl) Akm'(t8)) = - ~(k'-m)-(k'-~) &,(ti - t z ) ,  

t In general, v, may have added to it an imaginary term in this equation. 
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In  this expression k and m are set to K f 81 where K is some $xed wavenumber 
representative of the set (k, m, k', m'). The frequency differences (2 .16~)  become 

A& = Wk- %a f. q. (3.4) 
It is essential for the following that 4 vary only with 1, and therefore that the wave- 

number K is treated as a constant. Using this property with (3.3)' we rewrite (3.2) in 
the form 

where I3 is the product over the n pairs (i,j) and the sum over combinations implies 
P a s  

a sum over all distinct pairings of the indices. 
Define 8 new set of wavenumbers 

1,s m,-,-m, (i = 1,2,.. . ,2n) 
so that (3.6) becomes 

The product of &functions implies that X818 = 0, so 

Notice that the Pa can be freely permuted in ( 3 . Q  since the matrix subscripts in the 
product have disappeared. Therefore the time-ordered product in (3.1) has no effect 
on the order of the Ps and (3.1) becomes 

Here the relaxation 'rate' R, is defined as 

K,(t') = 1; dt" x 1 q(t' - t"). 

These equations can be rewritten in the Langevin form by differentiation of (3.1) 

(3.9) 

The proper choice in K ,  of the@& wavenumber K is evidently K = k, the only 
available wavenumber vector. The associated uncertainty in the value of hI is esti- 
mated from (2.18) to be less than 1 yo for the allowed region in figure 1. 

The Van Kampen (1974a, b) perturbation theory also leads to a Langevin equation 
of the form (3.9). The quantity KL is expressed by Van Kampen formally as an infinite 
series of time-ordered cumulants. The leading term in this series is 

and using (3.7): 
a 
- at @dt))  = - RL(t) <bk(t))* 

(3.10) 

This may be evaluated using (2.15 b) and (2.19) as 

K,(k~ t ,  = m z  h(k~m) h(m, k, [D-(t) sk-m-l+D+(t) &-rn+ll<~C1[8>~ (3-11) 
lm 
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where D* is defined by 

1( 7 )  e . f M  N - &exp (iAh7). (3.12) o*(t) 1 f 

The lmt form follows, since we have agreed to set T ; ~  = 0 (equation (2.20)) and treat 
the large-scale field as hear .  

If we neglect the contribution from h, (2.16) here, the e x p d o n s  (3.8) and (3.11) 
differ only by the assignment of the mean wavenumber K in (3.3). In the IDA limit 
(3.8) and (3.11) are identical. Therefore, in the allowed region of Sgure (1) the numerical 
distinction between these expressions is dominated by the contribution from h,, 
which will be discussed in 8 3.2. 

The second non-vanishing term in the Van Kampen series is O(A4). The simplified 
form (2.18) for A haa been used to provide an approximate evaluation of this term. 
The contribution from this is non-zero only because of the O(Zz/kz)* terms and waa 
found to be no more than 0-1 yo in the allowed region of figure 1. That corrections 
from higher-order terms in the Van Kampen series are very small waa anticipated from 
our comparison of (3.8) and (3.11). 

n o  s n o  Is1 

The real part of K,, 
Kp(k, t )  WK,), (3.13) 

determines the demy rate of the correlation function &(t) 4(0)), according to (3.9). 
As t becomes large, Kp approaches a constant limit, Kp(k,oo). An approximate 
analytic form for K p  may be obtained by treating A m a fixed constant in (3.11):t 

Hp(kyt) 21 Kp(k,oo) [1+(Taf)sh(ft)exp( -t/T8)-cosdft)8XP(-t/78)]y (3.14) 

78 = (khB)/hWk. (3.16) 

A generalized Langevin rate constant up may be defined by the condition that 

50';' Kp(k, t )  dt = 1. (3.16) 

Thus, v ~ l  represents the first e-folding period for the decay of the autocorrelation of 
the 4. 

In the limiting case that 
vp7s 4 1, (3.17) 

we have 
vP = Kp(k,a). (3.18) 

The approximation (3.18) is that used by PMW and also gives the vp in the Hmselmmn 
transport equation (1.1). We expect this Btatic (or resonant-triad) approximation to 
be valid to the left and below the dashed curve in figure 1 (defining the boundary of 
the weak-interaction regime). 

3.2. Comlpu.ta.th of the Langevin rate 
For the GM internal-wave model, it is an excellent approximation to set mh = kh 
inAandA+ in (3.11).Ifwedsosetq =fwemayuse(2.21)and(2.22)toobtain 

t The numerical evaluation presented in 5 3.2 shows that (3.14) i a  a mtisfaotory approximetion 
for K,(k, t ) .  



326 J .  D. Meiss and R. N. Watson 

I I I I I 
w = 0.3 No 

I I I I I 
10 50 90 130 170 210 

kZB 

FIGURE 2. The solid curves represent the decorrelation constant K,(k,, a) (3.19) displayed in 
unite of No at the depth of 100 m for several values of the frequency %. The daehed curves 
represent the quantity vp/No obtained from (3.16). The condition (3.20) is satisfied in the 
domain to the right of the dotted curve. 

where it is understood that mh = kh. For specific calculations we shall use the values 
for No, f, and B specified in 3 2.2. 

Values of K,(k,, c;o)/No, obtained from (3.19), are shown as the solid curves in figures 
2 and 3, corresponding to depths of 100 and 2000 m. Equation (3.19) was evaluated 
using both the full h, + h, and the simplified hz form of the coupling coefficients (2.16). 
The maximum contribution from h, to the allowed region in figure 1 occurs along the 
boundary at w/  f = 5. Since this corresponds to a correction of only 10 yo at most, 
the simplified form with h = hI seems to be adequate in the allowed region. To a 
comparable degree of accuracy, we might also have used the form (2.17) for hz. 

Corrected values for vp using (3.16) are shown as the dashed curves in figure 2. 
In the strong-interaction regime the Langevin rate is much less than that predicted 
by the static, resonant-triad approximation represented by (3.19). 

In figure 4 we show the Langevin rate v, as a function of w and mode number j, 
where we have set n(z) = 1 and j is calculated as keB/n.t For j 2 10 and w / f  = 6, 

t With the substitution ks B = n( j - a), (3.19) agrees precisely with the corresponding expres- 
sion (36) of PMW in the IDA. 
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2000 m depth T--- 
10-3C / ~ = 0 . 1  No 

10” 1 1  
130 170 90 10 50 0 

kzB 

FIGURE 3. The conettmt Kp(ks, co)/N,, is shown for a depth of 2000 m. 

we have used (3.16). The curves for j = 1 , 3, and 5 for w/f < 5 are taken from figure 1 
of PMW. The dashed curve represents the equation v, = o. The striking modification 
of v,, may be seen on comparing figure 4 with the corresponding figure 1 of PMW. 

The domain 
o&h < cu2)*, (3.20) 

where ( U2) is given by (2.25), is bounded by the dotted curve in figure 2. It is interesting 
to note that the condition y = kh( Us)* is met at Kp(ksy 00) 21 0 - h .  

4. Action transport 
4.1. T?M action-transprt equation 

In this section we discuss the flow of action density in wavenumber and co-ordinate 
space by introducing the ‘ Wigner ’ distribution (Wigner 1932) 

Using the action-amplitude variables of (2.12) and the assumption that the internal- 
wave field varies slowly in space on the scale of the wavelength 2n/K, we obtain 
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10- 

VP - 10- 
No 

10- 

10- 

I I I I I I 

v /  1 / 1  I 
5 9 

I 
9 

W l f  
FIGURE 4. The Langevin rate v p  is shown for various mode numbers j and frequencies w. 

The dashed curve corresponds to w = v,. 

where the group velocity V(K) = VK%. The normalization hm been chosen so that 
the total action per unit volume is 

P(r) = /d3KP(K,r), 

and the total energy and momentum per unit volume are 

E(r) = /d3KF(K,r)crg, M(r) = jd3KP(K, r )K.  (44 

Y(k,m,t) = b,*(t)b,(t), (4.3) 

P(kl~ m1, t )  = Ak,m:ma(t) Y(k2, m2, t ) .  (4.4) 

Ak1mlbma 8k1-kt&,% + 8 m l - m a A ~ ~ * *  (4.5) 

The derivation of a transport equation for (4.1) begins with the introduction of 

which, by (2.15), satisfies the equation 

kama 
Here A is given by 

We wish to obtain a differential equation for the ensemble-averaged quantity 
(Y(k,m, t ) ) .  As a first step, we integrate formally (4.4): 

< Y(k0, m,, t ) )  
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yBk@>%n(tl, * * - 9 ten)  x 
k1.. ml.. .I&,, -1 

(Ako%klml(tl) Ak1m,LB"2(t2) * *  * A ~ , - l r n 2 n - ~ m s n ( t 2 ~ ) ) ,  (4*7) 

where the labels on the ts are chosen consistently with the time ordering implied in (4.6). 
The moment (4.7) may be evaluated in terms of the second moments Since A (4.5) 

is assumed Gaussian : 

(Aklmp"'(tl) Ak,~ePa(t2))  = { - 8(kl-ai)+(ks+*) 8(ml-pl)+61i~-pl) 

+ 4k1-q&(mx-Px) ~ h 1 - p 1 ) - ~ * - O * ) ~  ~(ki-Ql).(ml-Pl)(tl - t2)3 

G,p(7)  = 8 p P W  +4Pp(7). 

(4.8) 

The quantities 4 are defined by (3.3) and we are again assuming the IDA limit. 
The moment (4.7) may now be expressed in a form analogous to (3.5): 

YU = Z I: X II { - 8 ~ - l - ~ ) + ~ - ~ - ~ ) 8 ( m ~ - l - q ) + ~ - l - m ~ )  
comb. 1 ... km-l ml. ..mt,-l pairs 

-I- 8&-1-ki)-hj-1-q) 8 h+1-w)-kj-1-kj)} P&-l-ki),(q-l-q)(ti - (4*9) 

Here as in 5 3 Z implies a sum over all combinations of pairs of As. 
comb. 

Define a new set of summation variables 

4 = k-l-kc, pc = m,-,-m, (i = 1,2 ,..., 2n); (4.10) 

and rewrite (4.9) as 

YB = I: 8~-k8, , -~88m+uyn-ps  
comb. 11 ... 1, h...~,,, 

x n [ - ~ ~ + l j 8 p ~ + P j + ~ ~ - p j 8 ~ - - L j l q l . ~ ( t C - t , ) '  (4.11) 
PafS 

The 8-functions imply Z, 1, = X, p,, so we may set 

~ m o - m x n - ~ p s  = 8(ko-ks&6ne-m2,J 

and remove this from the sums. The p-sums may now be done to give 

Next define another set of wavenumbers k, satisfying 
L 

We have let the new variable k, be equal to the old kan, and also designated the 
pairs i -j by subscripts a. Substituting (4.13) into (4.12) and carrying out the 1-sums 
gives 

Now expand the first 8-function in terms of a new set of variables mu: 

(4.16) 
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where the new variable m, is equal to the old variable m8,. Substitution of the result 
into (4.6) yields 

Here we have defined a transport matrix 

(4.17b) 

(4.17~) 

Differentiation of (4.16) with respect to time yields the transport equation for Y: 

f (Y(k,m,t ) )  = Kbrm'(t)(Y(k',m',t)). (4.18) 
at k'm' 

If we do not wish to take the IDA limit, we may again use the lowest-order expres- 
sion obtained from Van Kampen's perturbation theory. This transport equation hae 
the same form as (4.17) and (4.18) except that, ae before, the full coupling coefficients 
are used. For the Van Kampen form we replace the term K, in (4.17) by the real part 
of (3.11). The term K ,  is replaced by 

K F ( ~ ,  k, t )  = ha@, k )  @[D-(t) 4-kJ- l  +D+(t) &-k'+1] ( IclIs>. (4.19) 

Thus the transport equation (4.18) is exact to the extent that the IDA limit is valid 
and the perturbation theory can be used to provide corrections to the IDA. We shall 
indicate presently the importance of these corrections for the internal wave model. 

I 

The transport equation for the Wigner function (4.1) is obtained by writing 

k = K-&p, m = K+#p,  k' = K - a p ,  m' = K + # p ,  

where use has been made of the &functions appearing in (4 .17~) .  In an approximation 
consistent with the derivation of (4.1) we take IpI < IKI, IKI. Then (4.18) becomes 

a 
at K' 
-( Y ( K -  )P, I( + &PI) = KF(K, K )  ( y(K - #P> K' + &PI> 

- 2K,(K) (Y(K - *P, K + BPI). (4.20) 

Here we have neglected the corrections that are linear in the small wavenumber p. 
These terms represent spatial gradients of the Wigner function on the largest scale 
of inhomogeneities of the wave field. 
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Application of the Fourier transformation of (4.1) to (4.20) gives the transport 
equation 

E+V(K) .V ,  P(K,r,t) = S(K,r , t ) ,  1 1 (4.21) 
S(K,r,t) = 2j@K'KF(K, R',t)P(K',r,f)-2Kp(K,t)P(R,r,t).J 

Here V(R) is the group velocity corresponding to wavenumber K. 
Because the transport coefficients here are time dependent, t = 0 can play a special 

role in using (4.21). When negligible redistribution of the action occurs during the 
correlation time 78, the time-independent form may be used. We may, of course, 
sequentially re-derive (4.21) at time intervals longer than the correlation time ?a. 

We note that, since the transport coefficients of (4.21) do not depend on the he-scale 
flow, we could average over realizations of the he-scale flow aa well as the large-scale 
flow. 

In  the IDA we would set h = h, (2.16) in these equations. The symmetry of hI 
implies (see (4.17)) 

KF(K, R', t )  = Kp(K, t )  (IDA). (4.22) 

In  this case it is clear from (4.21) that the total action is conserved by the wave 
scattering. 

K' 

4.2. Computation of internal-wave tramport 

For our present applications we shall ignore the relatively slow transport in horizontal- 
wavenumber space. The inequalities (2.1) then imply that the horizontal components 
of K and K' may be set equal to some constant, say Kh, in (4.21). If we assume that P 
depends only on depth and vertical wavenumber (since the dependence on Kh can 
be suppressed) then (4.21) takes the form 

@& = 8(0,-+ k f Iy 
where we have again set q = f. 

We have introduced in the left-hand side of (4.23) an additional convective term 
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10 

FIGURE 6. The net rate of action loss due to interaction with the large-scale flow (4.29). 

to take account of the change of VIisllii frequency N(z) with depth. A formal deriva- 
tion of this term by the method of Watson & West (1975) gives the expression 

d lnN 
dz * 

hz = K(kz)  ks- (4.25) 

This is just the WKB relation between N and the vertical component of wavenumber. 
For the applications described in this section we shall make the resonant-triad 

approximation in (4.23). The k: integration in (4.24) may then be done, yielding 

(4.26) 

Here k$ is defined by the resonance condition 

(4.28) 

where the group velocity in K arises from the integration. 
We can obtain an estimate of the corrections to the IDA by setting F = Fo, a 
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FIQURE 

F 

The transport of action from (4.32). The horizontal wavelen& is 1000 m. 
The three curvea me for times tNo = 40, 200 and 600, aa indicated. 

constant, in (4.26). The total action is then increasing owing to the interaction with the 
large-scale flow at the rate 

(4.29) 

which of come  vanishes in the IDA. This quantity is shown in figure 5 for w = 0.3N0 
and 0.06N0. Reference to figure 2 indicates that (4.29) is about two orders of magnitude 
smaller than Kp and so the corrections to the IDA are again very small. 

For our subsequent discussion we shall accept the IDA as valid and set h = h, in 
(4.26) and (4.28) so that 

(4.30) qk,, 2, t )  = x W Z Y  [ F ( e ,  2, t )  -w,, 2, t)I. 
lY= f 

The rates of change of energy and momentum are obtained from (4.2): 

Thus, for example, a domain in which F decreases with increasing k, contributes an 
increase in momentum and a decrewe in energy (since w decreases with increasing k,) 
to the fine-scale flow. The transfer is to or from the large-scale flow, as the caae may be. 
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F 

D 

Frau~.~ 7. The computation of figure 6 is repeat& for 8 modified initial condition. 
The three curves are at tNo = 20, 100 and 200. 

When there is no z-dependence, (4.23) becomes 

(4.32) 

and is eaaily integrated numerically. As an example we choose an equally spaced grid 
in k, between the limits 10 < k z B  < 100. A reflecting barrier is placed at kzB = 10 
and an absorbing barrier at k z B  = 100. A computation is presented in figure 6 with 
an initial condition 

1 
0 (otherwise). 

(26 < k z B  < 32), 
F(kz,O) = 

Because the rate constant K increases significantly with ks, the transport is predomi- 
nantly to higher wavenumbers with action flowing out of the system at k,B = 100 
owing to the absorbing barrier. 

Figure 7 displays the transport of action given the initial condition 

F(kZ,O) = ( 0 (otherwise). 
1 (46 < k,B < 52)  

Because K increases with k8, the transport is more rapid than in figure 6. The jagged 
appearance of portions of the curves is due to the finite size of the steps I k, - k?J. 

We illustrate the loss of energy from the fine-scale field by choosing an initial 
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distribution concentrated near a vertical wavenumber b. The absorbing barrier is 
placed a t  k = kp + 80/B. The energy (4.2), normalized to unity at  t = 0, is evaluated 
using (4.32) and displayed in figure 8 for several values of kp.  The principal energy 
loss is to the absorbing barrier. Because the rate constant K in (4.30) increases with 
kE, energy absorption is insensitive to the precise location of the barrier. 

We introduce an inverse Richardson number by 

R-1 =&((;)a), 

where u is the horizontal component of the he-scale velocity field. In  figure 9, the 
time dependence of R-1 for the initial conditions of figures 6 and 7 is displayed. We 
have normalized R-1 to unity at t = 0. 

When the Vliislilzi frequency depends on depth, the ks term in (4.23) may be im- 
portant. Use of the Garrett-Munk exponential profile, (2.24), in (4.25) yields 

which may be integrated to obtain 
kse-a/B = k,, (4.33) 

where k, is constant in time and represents the effective surface vertical wavenumber. 
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tlN0 

FIQURE 9. The variation of inverse Riohardson number with time. The curves labelled (6) 
and (7) refer to  the cases shown in figures 6 and 7, respectively. 

The transport equation may be partially integrated by defining a new dependent 
variable 

(4.34) 

(4.36) 

Once W is known, F may be obtained using (4.33) and (4.34). 

in (k,,n)-space, where n 
time as implied by (4.33) and (4.34): 

In our computations the function F(kz, z ,  t = 0) is evaluated on a rectangular grid 
ez/B. As time increases ks is constant, but n depends on 

Here the dispersion relation (2.11) has been used. For wk 9 f this becomes 

so that convection is relatively more important for the small vertical wavenumbers. 
For these computations absorbing boundary conditions have been chosen. A wave 

reaching the top (n = 1) or the bottom (n = 0) is absorbed. 
In figure 10 we display a computation for k h  B = 5.  The initial condition is a Gaussian 

bump centred a t  k s B  = 83 and n(z) = 0-44. The sign of the wavenumber is chosen 
negative so that the convection is upward. The group velocity for ksB c 30 is so 
large that the action is rapidly convected to the surface and lost from the computation. 



Internal-wave interactions in the induced-diffusion approximation 337 

( b )  

A t = O  \ 

.- I 
7 0 . 8  

-1.0 

I t = lOO/N, 

' 0.2 

' 0.2 

FIGURE 10 (a, b ) .  Legend on p. 338. 
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' 0.2 

FIGURE 10. Integration of the Wigner-function transport equation (4.35) with K,B = 5. The 
initial condition is a Gaussian bump with positive group velocity. (a) presents the initial condi- 
tion, (b)  is for tN, = 100, and (c) is for tNo = 300. 

i c 

0.2 &L--+-d YL,-IIII ---* 
20 60 100 140 

ks 

L! 
FIGURE 11 (a). Legend on facing page. 
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0.8 -7 

n (z) 

60 100 140 
k* 

FIGUBE 11. Contour plots of the Wiper  function for an initial condition near the surface. 
The initial condition is similar to that in figure 10 except that the bump is centred at n = 0.8. 
(a) is at tNo = 100, and (a) is at tNo = 300. 

For greater wavenumbem, scattering dominates and the bump spreads relatively 
more rapidly in the wavenumber dwection than in the spatial direction. As in figure 7 
the jagged portions of the curves are due to the discrete steps from the resonance 
conditions. Total action is conserved by the algorithm to within 1 yo for tNo Q 400. 

Figure 11 is a contour plot of a simi!ar computation. Here we choose an initial 
Gaussian bump centred at k, B = 83 and n(z) = 0.8. The sign of wavenumber for this 
case is positive. The scattering is more rapid for this case since by (2.23) the magnitude 
of 8 in (4.36) is proportional to n(z). In  these figures the thick lines indicate the curve 
which begins at t == 0 m the ocean surface (n = 1). Action could only flow into the 
region above this boundary by reflection of k, < 0 waves at the ocean surface. 

5. The bispectrum 
The bispectrum for the fine-scale flow may be obtained from the quantities 

(4*, 4, bk,)* (6.1) 

If we assume that k,, k, and k, am all nearly equal to some constant I(, and furthermore 
that the expression (6.1) varies slowly when the b vary over the range Zh, Zb, then the 
Van Kampen perturbation theory gives 

Here we have msumed that the imaginary part of KL vanishes. 
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6. Conclusions 
The calculations reported by PMW used discrete vertical eigenfunctions to describe 

the linear internal-wave field. These were evaluated in the WKB approximation 
using the GM scaling (2.24). In the present paper we have followed Olbers and MB 
in using a three-dimensional Fourier representation and a locally constant Viiisiilii 
frequency. The distinction between these descriptions is not significant for our present 
work.Infact,ifwesetIc,B = n(j-t)andn(z) = lin(2.23),ourexpmsion(3.19)agrees 
precisely with the corresponding expression (36) of PMW when the IDA limit is taken. 

The Langevin rate v, was seen in PMW to be a fundamental quantity in the theory 
of internal-wave transport processes. It provides the decay rate of the correlation 
function of the Fourier amplitudes, it provides the relaxation rates for McComas’ 
(1977) ‘bump experiments’, and it was used by PMW to derive the full Hasselmann 
transport equation. We have given a prescription for calculating up in the ‘allowed 
region’ of figure 1. This is the region in which the induced-diffusion mechanism is 
dominant. Corrections to the IDA appear to contribute at most about 10% in this 
region. It is also the region for which the GM spectrum represents, in an approximation, 
an ‘equilibrium solution ’ to the Hasselmann transport equation (the quantitative 
form of this statement is seen from figure 4 of PMW). 

The transport equation (4.21) is also expected to be valid in the allowed region of 
figure 1. I n  the static, resonant-triad limit when t 9 7s, this is equivalent to the IDA 
limit of the Hrtsselmann equation used by MB and by Olbers. The condition for use 
of the static limit in (4.21) must be determined for specific applications, since this 
depends on the initial form of F. If this does not differ significantly from the GM form 
and does not have sharp ‘bumps’, the static limit appears to be valid in the allowed 
region of figure 1. For a spectrum not close to ‘equilibrium’, the transport rates de- 
duced from (4.21) are expected to be substantially less than would be obtained from 
the Hasselmann equation for the induced-diffusion domain. 

The right-hand boundary in figure 1 corresponds to the limit at which Munk (1981) 
has anticipated that the internal-wave spectrum rolls off owing to instabilities. It also 
corresponds to the roll-off of temperature gradient spectra observed by Gregg (1977). 
A flow of internal wave energy across the lower and right-hand boundaries is predicted 
by the wavB-wave transport theory. 

The regions below and to the left of the allowed region do not correspond to ‘equili- 
brium domains’ for the GM spectrum, as calculated by MB and PMW. According to 
these calculations, energy flows out of the domain of j < 10 and into the domain 
o < 6f (see, e.g., figure 8 of McComas 1977). The identification of the sources and sinka 
of energy in these non-equilibrium regions will presumably require consideration of 
other than just internal-wave-inte~al-wave interactions. 

This research was partially supported by the Office of Naval Research under 
contracts N00014-78-C-0050 and N00014-79-C-0637. The authors would like to thank 
Dr Walter Munk for helpful suggestions concerning this work. 



Internul-wave interactions in the induced-di,fszl.ion approximdwn 341 

REFERENCES 

BOOKER, J. R. & BBETEEBTON, F. P. 1967 J. Fluid Mech. 27, 613. 
BBETEERTON, F. P. 1966 Quart. J. R. Met. SOC. 92, 466. 
Cox, C. S. & JOENSON, C. L. 1979 Inter-relations of micmproceesee, internal wavea, and large 

DAVIDSON, R. C. 1972 Method8 in Nodimear Pluana Themy. Aaademic. 
GARRETT, C. J. R. & MUNK, W. H. 1979 Ann. Rev. Fluid Mech. 11, 339. 
GREQQ, M. C. 1977 J.Phy8. Omuwg. 7, 33. 
&SELMA", K. 1966 Rev. Ge5p?&8.8pa&3Phya. 4, 1. 
HASSELMANN, K. 1967 Proo. R. Soo. Lond. A 299, 77. 
HOWWAY, G. 1979 Gwphya. Aatrophg8. Fluid w. 11, 271. 

HOLLOWAY, G. & HENDERSEOTT, M. C. 1977 J .  Fluid Mech. 82, 747, 

McCoiu~s, C. H. & BRETEERTON, F. P. 1977 J .  Gwphya. Rea. 82, 1397. 
MEISS, J. D., POMPHREY, N. & WATSON, K. M. 1979 Proc. Nat. A d .  Soi. U.S.A. 76, 2109. 
M u m a ,  P. 1976 J. Fluid Me&. 77, 789. 
MUNE, W. H. 1981 In Eml& of Phyeical Oceamqmphy (ed. B. A. Warren & C. Wunsch), 

OLBERS, D. J. 1976 J. Fluid Meoh. 74, 376. 
PEILLIPS, 0. M. 1977 The 13ymmiix of the Upper Ocean, 2nd edn. Cambridge University Press. 
PINEEL, R. 1976 J .  Gwphy8. Res. 80, 3892. 
POMPHREY,N. 1981 In  N o n l i n e ~  Properties of I W d  W a e s  (ed. B. J. West), p. 103. 

PO~PHREY, N., MEISS, J. D. & WATSON, M. K. 1980 J .  Ckophy8. Rea. 85,1086. 
VAN WEN, N. G. 1974a Phyaica 74, 216. 
VAN KAMPEN, N. G. 19743 Phys&ca 74, 239. 
WATS~N, K. M. 1981 In  Nonlinear Propertie8 of I&wnal Wavea (ed. B. J. West), p. 193. 

WATSON, K. M. & WEST, B. J. 1975 J .  Fluid Mech. 70, 816. 
WIQNER, E. P. 1932 Phya. Rev. 40, 749. 
YAW, P. 1981 Ph.D. thesis, Spectral transfer of the nonlinear internal wave field of the Upper 

scale ocean featurea (unpublished manuscript). 

HOLLOWAY, a. 1980 J . P b 8 . 0 - g .  10, 906. 

MCCOMAS, C. H. 1977 J .  Pk8. 0-n 7, 836. 

p. 264. MIT Prese. 

American Institute of Physios. 

American Institute of Phymcs. 

Ocean. University of California, Berkeley. 


